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Figure 1: Colorization results of historical black and white photographs from the early 20th century. Our model can obtain realistic
colorization results whether it is a picture of landscapes (a), man-made environments (b), human portraits (c), or close-ups (d). Photos taken
by Ansel Adams (a) and Lewis Hines (b,c,d), and are taken from the US National Archives (Public Domain).

Abstract

We present a novel technique to automatically colorize grayscale
images that combines both global priors and local image features.
Based on Convolutional Neural Networks, our deep network fea-
tures a fusion layer that allows us to elegantly merge local informa-
tion dependent on small image patches with global priors computed
using the entire image. The entire framework, including the global
and local priors as well as the colorization model, is trained in an
end-to-end fashion. Furthermore, our architecture can process im-
ages of any resolution, unlike most existing approaches based on
CNN. We leverage an existing large-scale scene classification data-
base to train our model, exploiting the class labels of the dataset
to more efficiently and discriminatively learn the global priors. We
validate our approach with a user study and compare against the
state of the art, where we show significant improvements. Further-
more, we demonstrate our method extensively on many different
types of images, including black-and-white photography from over
a hundred years ago, and show realistic colorizations.
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1 Introduction

Traditional colorization requires significant user interaction
whether in the form of placing numerous color scribbles, looking
at related images, or performing segmentation. In this paper, we
instead propose a fully automated data-driven approach for col-
orization of grayscale images. Our approach uses a combination
of global image priors, which are extracted from the entire image,
and local image features, which are computed from small image
patches, to colorize an image automatically. Global priors provide
information at an image level such as whether or not the image was
taken indoors or outdoors, whether it is day or night, etc., while lo-
cal features represent the local texture or object at a given location.
By combining both features, we can leverage the semantic infor-
mation to, for example, color the dusk sky or the human skin—all
without requiring human interaction.

Our approach is based on Convolutional Neural Networks, which
have a strong capacity for learning. We propose a novel architec-
ture that can jointly extract global and local features from an image
and then fuse them together to perform the final colorization. We
will show that this approach greatly outperforms using local fea-
tures only. Furthermore, we are able to exploit semantic class labels
of existing datasets during training in order to learn more discrim-
inative global features. However, the semantic class labels are not
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needed when colorizing grayscale images. We use an existing large
scale scene database to train our model to predict the chrominance
of a grayscale image using the CIE L*a*b* colorspace. Our method
requires neither pre-processing nor post-processing: everything is
learnt in an end-to-end fashion.

Our model consists of four main components: a low-level features
network, a mid-level features network, a global features network,
and a colorization network. Conceptually, these networks function
as follows: First, a common set of shared low-level features are ex-
tracted from the image. Using these features, a set of global image
features and mid-level image features are computed. Then, the mid-
level and the global features are both fused by our proposed “fusion
layer” and used as the input to a colorization network that outputs
the final chromimance map. Needless to say, this is not explicitly
implemented as a sequential procedure; rather, it is realized as a
single network. Note that no pre-processing nor post-processing is
done: it is all computed in a single step. Additionally, as a side
product of our approach, we can also perform classification of the
scene. While the global features are computed using fixed-sized
images, our novel approach for fusing the global and local features
allows our model to be run on input images of arbitrary resolutions,
unlike most Convolutional Neural Networks.

Due to the separation between the global and local features, it is
possible to use global features computed on one image in combi-
nation with local features computed on another image, to change
the style of the resulting colorization. For example, if the global
features are computed on an image at dusk and combined with an
image of a sunny beach, the resulting colorization will be of a beach
at dusk. An image can also be made to seem as if it was taken dur-
ing a different season. This highlights the flexibility of our model.

We train and evaluate our model on a large-scale scene database.
For evaluation, in a user study we compare our method against a
strong Convolutional Neural Network baseline. The colorization of
our proposed approach is considered “natural” 92.6% of the time,
while the baseline only achieves roughly 70%. We also provide a
comparison against the state of the art. Finally, we demonstrate our
model extensively on early-20th-century black-and-white photog-
raphy and show convincing results. Some examples are shown in
Fig. 1.

In summary, in this paper we present:

• A user-intervention-free approach to colorize grayscale images.
• A novel end-to-end network that jointly learns global and local

features for an image.
• A learning approach that exploits classification labels to increase

performance.
• A style transfer technique based on exploiting the global fea-

tures.
• In-depth evaluation of our model with user study and many

diverse examples, including hundred-year-old black-and-white
photographs.

2 Related Work

One of the more traditional approaches to image colorization con-
sists of propagating colored user-specific scribbles to the whole im-
age. Levin et al. [2004] proposed an optimization-based frame-
work for colorizing a grayscale image using this approach. This
was done by solving a quadratic cost function derived from dif-
ferences of intensities between a pixel and its neighboring pixels.
This method was improved by Hunang et al. [2005] to prevent the
color bleeding over object boundaries. Yatziv and Sapiro [2004]
proposed a fast colorization technique using chrominance blend-
ing based on weighted geodesic distances. Luan et al. [2007] em-

ployed texture similarity for more effective color propagation. Tex-
ture classification has also been used for cartoon colorization [Qu
et al. 2006]. Sýkora et al. [2009] proposed a flexible colorization
tool for hand-drawn cartoons based on a graph-cut-based optimiza-
tion framework that is easily applicable to various drawing styles.
To enable long-range propagation for image recolorization or tonal
editing, various affinity-based methods have also been proposed,
such as global optimization with all-pair constraints [An and Pel-
lacini 2008; Xu et al. 2009], Radial Basis Function interpolation [Li
et al. 2010], manifold learning [Chen et al. 2012], and stochastic
modeling of appearance similarities between user-specified pixels
and other pixels [Xu et al. 2013]. However, these methods heavily
depend on user input and require trial and error to obtain an accept-
able result.

Unlike the scribble-based methods that utilize user-supplied col-
ors, example-based colorization techniques exploit the colors of a
reference image that are similar to the input image. For recolor-
ing a color image, color transfer techniques [Reinhard et al. 2001;
Tai et al. 2005; Pitié et al. 2007; Wu et al. 2013] are widely used.
These compute color statistics in both input and reference images
and then establish mapping functions that map the color distribu-
tion of a reference image to the input image. Inspired by the color
transfer, Welsh et al. [2002] proposed a general technique to col-
orize grayscale images by matching the luminance and texture in-
formation between images. This technique was improved by us-
ing a supervised classification scheme that analyzed low-level fea-
tures [Irony et al. 2005]. Charpiat et al. [2008] proposed a global
optimization framework that deals with multi-modality to predict
probability of possible colors at each pixel. Gupta et al. [2012]
match superpixels between the input image and the reference im-
age using feature matching and space voting to perform the col-
orization. However, these methods require the user to supply suit-
able reference images that are similar to the input image, which is
a time-consuming task. In comparison, our model does not require
any user annotation at all.

Instead of requiring the user to provide reference images, Liu et
al. [2008] proposed an example-based colorization robust to illu-
mination differences between input and reference images that are
obtained directly from web search. Its applicability is, however,
limited to famous landmarks where exact matches can be found.
Chia et al. [2011] extend this to general objects and scenes where
exact matches are in general not available by filtering the reference
images so that only the most appropriate parts of the images are
used. However, they still require the user to input the search query
to find the reference images.

More recently, Cheng et al. [2015] proposed a fully automatic ap-
proach in which various features are extracted and the different
patches of the image are colorized using a small neural network.
Joint bilateral filtering is used to improve the results. Unlike our
approach, they use very little training data which greatly limits the
type of images it is applicable to. Furthermore, they require a high-
performance segmentation model to provide a segmentation of the
image. Because of this dependency on segmentation, result is very
poor for images in which none of the segmentation classes appear.
This limits the application of the approach to simple outdoor scenes.
On the other hand, our approach does not rely on any hand-crafted
or pre-trained model. We learn everything in an end-to-end fashion
from a large dataset which allows our model to generalize to many
types of images.

With the advent of back-propagation roughly three decades
ago [Rumelhart et al. 1986], neural networks have been exploited
for a diversity of tasks. Initially, research focused on small set
of outputs, in particular the classification task; however, they are
now successfully applied to many different tasks in which the out-



put is an image, such as optical flow [Fischer et al. 2015], super-
resolution [Dong et al. 2016], contour detection [Shen et al. 2015],
and semantic segmentation [Long et al. 2015]. These are based
on convolutional neural networks [Fukushima 1988; LeCun et al.
1998] and can process images of any resolution. While most ap-
proaches tackle single tasks, networks that jointly handle two tasks
such as the one we propose in this work have been used for depth
estimation [Eigen and Fergus 2015], where depth, surface normals,
and semantic labels are predicted jointly, and for learning feature
embeddings [Bell and Bala 2015]. Multi-scale fusion has also been
used [Eigen and Fergus 2015; Wang et al. 2015c], however, these
approaches, in general, fuse images at different scales by scaling
the features and concatenating them at a common resolution be-
fore further processing. In contrast, our fusion approach generates
a global image feature vector which is fused with the local features.
By using a single global feature vector for the entire image, it is
possible to exploit the class labels for more performance. As far as
we know, we are the first to fuse a global feature with local features
in a single framework where everything can be learned end-to-end.

3 Joint Global and Local Model

Our approach is based on deep Convolutional Neural Net-
works [Krizhevsky et al. 2012] that have been proven able to learn
complex mappings from large amounts of training data. Our net-
work is formed by several subcomponents that form a Directed
Acyclic Graph (DAG) and contain important discrepancies with
widely-used standard models. In particular, our model:

• can process images of any resolution,
• incorporates global image priors for local predictions, and
• can directly transfer the style of an image into the colorization of

another.

An overview of the model and its subcomponents can be seen in
Fig. 2. It consists of four main components: a low-level features
network, a mid-level features network, a global features network,
and a colorization network. The components are all tightly coupled
and trained in an end-to-end fashion. The output of our model is
the chrominance of the image which is fused with the luminance to
form the output image.

3.1 Deep Networks

Deep networks are neural networks that are formed by many layers.
These networks serve to predict continuous values from a given
input. They consist of layers that realize a fuction of the form:

y = σ̃ (b +Wx) , (1)

where x ∈ Rn and y ∈ Rm are the input and output of the layer,
respectively, W is an m-by-n matrix of weights, b ∈ Rm is a
bias vector, and σ̃ : Rm → Rm is a non-linear transfer function
σ : R→ R applied componentwise. Both the weights and the bias
are learnt through back-propagation [Rumelhart et al. 1986], which
consists of using the chain rule to propagate a loss to update the
parameters. The loss consists in the error between the prediction of
the network and the training data ground truth.

Convolutional Neural Networks are special cases in which weights
are “shared” spatially across an image. This has the effect of re-
ducing the number of parameters needed for a layer and gaining a
certain robustness to translation in the image. Typically, a layer is
organized as a 2D image with multiple channels so that the com-
ponents of the vectors x,y are pixels indexed by a cartesian coor-
dinate and a channel number. The matrix W above is defined as a
convolution of the image with a bank of filters, which, in the neu-
ral network view, means that the weights are “shared”. If one 2D

layer is aC-channel h×w image and the next layer is aC′-channel
h′ × w′ image, then n = h · w · C and m = h′ · w′ · C′. In this
case, the function (1) can be written for each pixel as:

yu,v = σ̄

b +
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where kw and kh are the kernel width and height (odd numbers),
respectively, xu,v ∈ RC and yu,v ∈ RC′

are the pixel component
of the input and the output of the layer, σ̄(·) is a componentwise
non-linear transfer function, Ws,t are C′-by-C matrices of the ker-
nel, and b ∈ RC′

is the layer bias vector. Note that the fact that the
weights Ws,t do not depend on the spatial coordinates u, v corre-
sponds to the fact that the weights are shared between the “neurons”
that can be parallelly translated to each other.

The most common non-linearity for neural networks is the Rectified
Linear Unit (ReLU):

σReLU(x) = max (0, x) . (3)

We will also employ the Sigmoid transfer function for the color
output layer which is defined as:

σSigmoid(x) =
1

1 + e−x
. (4)

A model is built by concatenating many of these layers consecu-
tively. Most classification networks [Krizhevsky et al. 2012; Si-
monyan and Zisserman 2015] initially use convolutional layers. At
the end they use regular fully-connected layers, which forces the
output to be a vector of a specific size, however, this also fixes the
input size of the network. Thus, these networks are only able to
process images of a fixed size. As we will next explain, our method
does not share this limitation. (However, we do use a similar sub-
network with fully-connected layers in the global features network.
See §3.2.2.)

3.2 Fusing Global and Local Features for Colorization

We use a novel approach to fuse both global and local features to-
gether. The global features act as an image prior on the local fea-
tures to indicate what type of image the input is. For example, if the
global features indicate that it is an indoor image, the local features
will be biased to not attempt to add sky colors or grass colors to the
image, but instead will add colors suitable for furnitures. We in-
tertwine both a global image feature network, similar to those that
compete in image classification tasks, with a fully convolutional
neural network that colorizes the image. In order to improve the
model efficiency, both networks use a number of common shared
low-level features.

3.2.1 Shared Low-Level Features

A 6-layer Convolutional Neural Network obtains low-level features
directly from the input image. The convolution filter bank the net-
work represents are shared to feed both the global features network
and the mid-level features network. This is similar to the weight
sharing in Siamese networks [Bromley et al. 1994], however, in our
approach only a subset of the full network is shared. Instead of us-
ing max-pooling layers to reduce the size of the feature maps, we
use convolution layers with increased strides. This is also impor-
tant for increasing the spatial support of each layer. A stride of 2
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Figure 2: Overview of our model for automatic colorization of grayscale images.

Table 1: Architectures of the different networks used in our model. Fully-Connected (FC) layers refer to the standard neural network layers
from Eq. (1), convolution layers use Eq. (2). The output layer consists of a convolutional layer with a Sigmoid transfer layer instead of a
ReLU transfer layer. Outputs refers to the number of output channels for the output of the layer. Upsample layers consist of using the nearest
neighbour approach to increase the resolution of the output by a factor of 2.
(a) Low-Level Features network (b) Global Features network (c) Mid-Level features network (d) Colorization network

Type Kernel Stride Outputs

conv. 3× 3 2× 2 64
conv. 3× 3 1× 1 128

conv. 3× 3 2× 2 128
conv. 3× 3 1× 1 256

conv. 3× 3 2× 2 256
conv. 3× 3 1× 1 512

Type Kernel Stride Outputs

conv. 3× 3 2× 2 512
conv. 3× 3 1× 1 512

conv. 3× 3 2× 2 512
conv. 3× 3 1× 1 512

FC - - 1024
FC - - 512
FC - - 256

Type Kernel Stride Outputs

conv. 3× 3 1× 1 512
conv. 3× 3 1× 1 256

Type Kernel Stride Outputs

fusion - - 256
conv. 3× 3 1× 1 128

upsample - - 128
conv. 3× 3 1× 1 64
conv. 3× 3 1× 1 64

upsample - - 64
conv. 3× 3 1× 1 32

output 3× 3 1× 1 2

indicates that instead of computing Eq. (2) for consecutive pixels,
every other pixel is computed. If padding is added to the layer, the
output is effectively half the size of the input layer. This can be
used to replace the max-pooling layers while maintaining perfor-
mance [Springenberg et al. 2015]. We use 3×3 convolution kernels
exclusively and a padding of 1× 1 to ensure the output is the same
size (or half if using a stride of 2) as the input. An overview of the
architecture of the shared features is shown in Table 1-(a).

3.2.2 Global Image Features

The global image features are obtained by further processing the
low-level features with four convolutional layers followed by three
fully-connected layers. This results in a 256-dimensional vector
representation of the image. The full details of the global image
features network can be seen in Table 1-(b). Note that due to the
nature of the linear layers in this network, it requires the input of
the low-level features network to be of fixed size of 224 × 224
pixels. However, this limitation does not affect the full approach as
we will discuss later.

3.2.3 Mid-Level Features

The mid-level features are obtained by processing the low-level fea-
tures further with two convolutional layers. The output is bottle-

necked from the original 512-channel low-level features to 256-
channel mid-level features. Note that unlike the global image fea-
tures, the low-level and mid-level features networks are fully con-
volutional networks, such that the output is a scaled version of the
input. In particular the output of the mid-level features network is
a volume of size H/8 × W/8 × 256, where H and W are the orig-
inal image height and width respectively. The architecture used is
shown in Table 1-(c).

3.2.4 Fusing Global and Local Features

In order to be able to combine the global image features, a 256-
dimensional vector, with the (mid-level) local image features, a
H/8×W/8× 256-dimensional volume, we introduce a fusion layer.
This layer serves to incorporate the global features into local fea-
tures. We write the output of the fusion layer for mid-level coordi-
nates (u, v) as:

yfusion
u,v = σ

(
b +W

[
yglobal

ymid
u,v

])
, (5)

where yfusion
u,v ∈ R256 is the fused feature at (u, v), yglobal ∈ R256

is the global feature vector, ymid
u,v ∈ R256 is the mid-level feature at

(u, v), W is a 256-by-512 weight matrix, and b ∈ R256 is a bias.
Here, both W and b are learnable part of the network.



This can be thought of as concatenating the global features with the
local features at each spatial location and processing them through a
small one-layer network. This effectively combines the global fea-
ture and the local features to obtain a new feature map that is, as the
mid-level features, a 3D volume. Therefore, the resulting features
are independent of any resolution constraints that the global image
features might have.

3.2.5 Colorization Network

Once the features are fused, they are processed by a set of convo-
lutions and upsampling layers, the latter which consist of simply
upsampling the input by using the nearest neighbour technique so
that the output is twice as wide and twice as tall. These layers are
alternated until the output is half the size of the original input. The
output layer of the colorization network consists of a convolutional
layer with a Sigmoid transfer function that outputs the chrominance
of the input grayscale image. The architecture can be seen in Ta-
ble 1-(d). Finally, the computed chrominance is combined with the
input intensity image to produce the resulting color image.

In order to train the network, we use the Mean Square Error (MSE)
criterion. Given a color image for training, we convert the image
to grayscale and CIE L*a*b* colorspace. The input of the model is
the grayscale image while the target output is the a*b* components
of the CIE L*a*b* colorspace. The a*b* components are globally
normalized so they lie in the [0, 1] range of the Sigmoid transfer
function. We then scale the target output to the size of the output of
the colorization network and compute the MSE between the output
and target output as the loss. This loss is then back-propagated
through all the networks (global features, mid-level features and
low-level features) to update all the parameters of the model.

3.3 Colorization with Classification

While training with only color images using the MSE criterion does
give good performance, it makes obvious mistakes due to not prop-
erly learning the global context of the image, e.g., whether it is
indoors or outdoors. As learning these networks is an non-convex
problem, we facilitate the optimization by also training for classi-
fication jointly with the colorization. As we train the model using
a large-scale dataset for classification of N classes, we have classi-
fication labels available for training. These labels correspond to a
global image tag and thus can be used to guide the training of the
global image features. We do this by introducing another very small
neural network that consists of two fully-connected layers: a hidden
layer with 256 outputs and an output layer with as many outputs as
the number of classes in the dataset, which is N = 205 in our case.
The input of this network is the second to last layer of the global
features network with 512 outputs. We train this network using the
cross-entropy loss, jointly with the MSE loss for the colorization
network. Thus, the global loss of our network becomes:

L(ycolor, yclass) = ‖ycolor − ycolor,∗‖2FRO

− α

(
yclass
lclass − log

(
N∑
i=0

exp
(
yclass
i

)))
, (6)

where ycolor and ycolor,∗ is the output of the colorization network and
the ground truth color, respectively, ‖ · ‖FRO is the Frobenius norm,
yclass is the output of the classification network, lclass is the true class
label for the image, and α is a parameter that weighs the relative
importance of the cross-entropy classification loss. Setting α = 0
would disable the classification loss and only use the colorization
loss.

Note that when performing back-propagation, the color loss af-
fects the entire network, while the classification loss only affects
the classification network, global features network, and the shared
low-level features network; it doesn’t affect neither the colorization
network nor the mid-level features network. For a visualization of
the full architecture including the classification network, refer to
Fig. 2.

3.4 Optimization and Learning

While our model is able to process images of any size, it is most
efficient when the input images are 224× 224 pixels, as the shared
low-level features layers can share outputs. Note that when the in-
put image size is of a different resolution, while the low-level fea-
ture weights are shared, a rescaled image of size 224 × 224 must
be used for the global features network. This requires processing
both the original image and the rescaled image through the low-
level features network, increasing both memory consumption and
computation time. While for evaluation this in not a problem, since
processing time is generally under a second, the learning procedure
has to process millions of images many times. It is therefore critical
to be as efficient as possible when training. For this reason, we train
the model exclusively with images of size 224× 224 pixels. These
images are obtained by first scaling the training images to 256×256
pixels and performing random crops to the final size. This cropping
allows the model to generalize better to other images. We also ran-
domly flip the images horizontally with 50% probability for further
robustness.

Learning very deep networks such as the one proposed directly
from a random initialization is a very challenging task. One of the
recent improvements that have made this possible is batch normal-
ization [Ioffe and Szegedy 2015]. Batch normalization consists of
normalizing the output before the transfer function at each layer.
The normalization is done by keeping a running mean and standard
deviation of the input to the transfer function, and using this mean
and standard deviation to normalize the input so that it is roughly
mean-centered with a standard deviation of one. This has shown
to speed up the learning greatly and allow learning of very deep
networks from random initializations. We use batch normalization
throughout the entire network during training. Once the network is
trained, the batch normalization mean and standard deviation can
be folded into the weights and the bias of the layer. This allows the
network to not perform unnecessary computations during inference.

It is common to use Stochastic Gradient Descent (SGD) to optimize
deep networks. However, this relies on setting a global learning rate
which becomes critical to learning. Furthermore, this learning rate
must also be gradually decreased as the model is taught. While
there are standard practices for classification networks [Krizhevsky
et al. 2012], there is no standard for tackling colorization with
a novel architecture like the one proposed in this work. There-
fore, instead of having to experiment and heuristically determine
a good learning rate scheduler, we sidestep the problem by using
the ADADELTA [Zeiler 2012] optimizer. This approach adaptively
sets the learning rates for all the network parameters without re-
quiring us to set a global learning rate. We follow the optimization
procedure until convergence of the loss.

4 Experimental Results and Discussion

We evaluate different variants of our model as well as comparing
against the state of the art. Evaluation is done on a large set of
diverse images that includes historical black-and-white images and
close-up images. We also evaluate our model in a user study and
find that the output of our model is considered “natural” 92.6% of
the time. Furthermore, we also show how it was possible to do style



Figure 3: We show the results of our approach on some of the images from the validation set of the Places dataset. Note the diversity of scene
types and images, including indoor scenes, outdoor scenes, and close-ups of objects. Note that all these results were obtained automatically
without any user intervention.
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Figure 4: We compare against the state of the art [Cheng et al. 2015]. First row contains the input image, the second row is the result by
[Cheng et al. 2015], the third row is the result by our baseline approach without the global features, while the fourth row is the results by our
approach. The area marked with a red dotted line is zoomed in. We can see that while [Cheng et al. 2015] fail to color important portions of
the image (e.g., mountain, rocks, brick wall), our approach realistically colors the entire image.

transfer directly using our architecture by exploiting global features
computed on a different image.

Unless otherwise mentioned, we use α = 1/300 for training all mod-
els so that the classification loss and the colorization loss are similar
in magnitude. We train our model on the Places scene dataset [Zhou
et al. 2014], which consists of 2,448,872 training images and 20,500
validation images. In total, there are 205 classes corresponding to
the types of the scene such as abbey, conference center, or volcano.
We filter the images by removing grayscale images and those that
have little color variance with a small automated script. This re-
sults in 2,327,958 training images and 19,546 validation images.
We randomly sort the training images and used them for optimiz-
ing our model parameters. We train using a batch size of 128 for
200,000 iterations corresponding to roughly 11 epochs. This takes
roughly 3 weeks on one core of a NVIDIA R© Tesla R© K80 GPU . All
results shown are taken from the validation set and not the training
set.

As a baseline, we also test our model without the global features,
consisting of the low-level feature network, the mid-level feature
network, and the colorization network with a 3 × 3 convolution in
place of the fusion layer, all concatenated together. The baseline is
trained in the same way as the main model, but with α = 0 as there
is no classification network. As we will show, this strong baseline
already outperforms the state of the art, although it performs much
worse than our full model. This baseline can be thought of as more
straightforward deep learning approach to colorization. However,
unlike standard approaches, it already contains a large set of non-

standard improvements, such as not using fully-connected layers,
using upscaling layers, and using a Sigmoid transfer function for
the final layer.

4.1 Colorization Results

We show colorization results on the validation set of the Places
dataset in Fig. 3. Note that these are all unconstrained and very
challenging images to colorize. Our model exploits the seman-
tic context of each image with the global features, allowing it to
properly colorize baseball fields, underwater scenes, and fire trucks.
Note that all these results are generated automatically without any
human intervention.

4.2 Comparison with State of the Art

We compare against the state of the art [Cheng et al. 2015] in Fig. 4.
We note that, in all cases the approach of [Cheng et al. 2015] failed
to color important portions of the image, our approach could color
all images in a coherent manner, as shown in the zoomed areas. In
forest, neither [Cheng et al. 2015] nor our baseline could properly
color the far away mountain nor the sky, while our full model could
realistically color both. In shore, our approach accurately colorized
the ocean, rocks and sky, while the other two approaches biased
tones towards either the rocks or the ocean. Finally, in doorway, the
red brick walls could be colorized accurately only by our approach,
despite being a small portion of the original image. Notice also
that our approach clearly distinguished between the colors of the



Baseline
Proposed

GT
0.4

0.5

0.6

0.7

0.8

0.9

1.0
N
a
tu
ra
ln
e
ss Approach Naturalness

(median)

Ground Truth 97.7%

Proposed 92.6%
Baseline 69.8%

Figure 5: Results of our user study evaluating the naturalness of
the colorizations. We evaluated the Ground Truth (GT), the baseline
model, and our full model on the validation images for 10 different
users. We can see that our model greatly outperforms the baseline
and gets close to the ground truth.

wall, the arch, and the door itself. All this was done by exploiting
global context and training with a very large set of real images,
which allowed our model to generate very realistic colorizations.
On the other hand, [Cheng et al. 2015] are limited to images in
which the semantic features work well: sky, sea, etc... This limits
their application to outdoor scenes in which there are no people.
Our approach can be applied to all sorts of images, e.g., indoor
scenes, portraits, and historical images with heavy artefacts as we
will show in the next subsections.

4.3 User Study

We performed a user study asking the question “Does this image
look natural to you?” to evaluate the naturalness of the ground-
truth validation images, the results of our baseline, and the results
of our model. Images are randomly chosen and shown to the users
one-by-one. The study was done with 10 different users, each
shown roughly 500 images of each type for a total of 1,500 images
each. Indications were given to the users to use their gut feeling and
not try to spend too much time looking at the details of the images.
All the images were shown at a resolution of 224 × 224 pixels.
We show the results in Fig. 5. We can see that, while the baseline
performs fairly poorly with roughly 70% of the images being con-
sidered natural, our approach has a median of 92.6%, which is close
to the 97.7% of the ground truth. This strongly indicates that our
model is able to generalize well and create realistic colorizations.

4.4 Importance of Global Features

The global features we propose in this work play a fundamental
role in establishing the context of the scene. Just looking at lo-
cal image patches leaves a lot of ambiguities which are hard to
solve. For example, our baseline that does not include the global
features sometimes makes critical errors such as coloring the sky
in indoor images, or coloring the ground in images of oceans and
lakes as shown in Fig. 6. This is further corroborated by our user
study in which the results of our proposed model are deemed “natu-
ral” 92.6% of the time while the baseline model is only considered
“natural” roughly 70% of the time as shown in Fig. 5.

4.5 Style Transfer through Global Features

One of the more interesting things our model can do is adapting the
colorization of one image to the style of another. This is straight-

Ground truth Baseline Proposed
Figure 6: Comparisons of our proposed architecture with and the
baseline without global features. We can see that, without global
features, the baseline sometimes makes the mistake of colorizing
the sky in indoor images or the ground in the middle of a lake. In
contrast, our proposed model uses the global features to establish
the scene context in order to not make such trivial mistakes.

Table 2: We compare the results of our classification with the
state of the art on the Places dataset validation split converted to
grayscale. We use the standard approach of evaluating Top-1 Ac-
curacy (whether or not the top predicted label is correct) and Top-5
Accuracy (whether or not the ground truth label is in the top-5 pre-
dictions). Despite using a much smaller network for classification
than the competing networks, we can obtain comparable results for
grayscale images. Furthermore, being able to classify is a side-
product of training our classification model.

Approach Top-1 Acc. Top-5 Acc.

Ours 50.6% 80.6%

VGG16 [Wang et al. 2015a] 52.8% 82.3%
CNDS [Wang et al. 2015b] 45.0% 75.6%
AlexNet [Zhou et al. 2014] 37.4% 68.5%

forward to do with our model due to the decorrelation between the
global features and the mid-level features. In order to colorize an
image A using the style taken from an image B, we compute the
mid-level local features of image A and the global features from
image B. We then fuse these features and process them with our
colorization network. Note that we compute both the local and the
global features from grayscale images; we do not use any color
information at all. We show example of this style transfer in Fig. 7
in which we both change the season and time of day using the global
features.

4.6 Colorizing the Past

We also test our model on historic black-and-white images. Note
that, due to the age and the type of film used, these images are
significantly different from modern images and the dataset used to
train our model. Furthermore, as they are true black-and-white im-
ages: no ground truth exists. Despite these images having signifi-
cant artifacts and a rough border around the edges, our model can
obtain good results as shown in Fig. 8.
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Figure 7: We analyze the effect of using global features computed
on different images when performing colorization. This can be seen
as a form of style transfer in which the global priors of an image
are used on another image. We show the result of using different
combinations of local and global features. The first two rows show
how it is possible to change the season from spring (yellow flowers
blossoming) to fall (dried plants) by changing the global features.
In the next two rows we show how it is possible to change the time
of day using the global features. By using both local and global
images computed from the same image, we get an image at dawn.
However, if we change the global feature to dusk, we get the col-
orization shown in the middle, which appears to be taken at dusk.
If we use the global features from a daytime image, we get the result
on the right. Note that both the global and the local features were
computed on grayscale images.

4.7 Classification Results

Although our network is designed for colorization and not classifi-
cation, we compare our classification network against the state of
the art in Table 2 to verify to what extent it is able to perform classi-
fication. For the sake of comparison, we evaluate the other methods
using grayscale input images. However, for our purposes and given
the limitation of grayscale images, we believe it is an excellent re-
sult, as our network performs nearly as well as the best performing
network that is exclusively trained and optimized for classification.

4.8 Comparison of Color Spaces

We compare the effect of using various color spaces. In particular,
we compare RGB, YUV and L*a*b* color spaces. In the case of
RGB, the output of the model is 3 instead of 2 corresponding to
the red, green and blue channels. We train directly using the RGB
values; however, for testing, we convert the RGB image to YUV
and substitute the input grayscale image as the Y channel of the
image. This ensures that the output images of all the models have
the same luminance. In the case of YUV and L*a*b*, we output the
chrominance and use the luminance of the input image to create the

Table 3: We run our model on images of different resolutions and
compute the average run times on both CPU and GPU. We can
see that, in general, using a GPU gives a 5× speedup gain for
our algorithm. Furthermore, we are able to process large images
(4MPx) in a few seconds on the GPU.

Image Size Pixels CPU (s) GPU (s) Speedup

224× 224† 50,176 0.399 0.080 5.0×
512× 512 262,144 1.676 0.339 4.9×

1024× 1024 1,048,576 5.629 1.084 5.2×
2048× 2048 4,194,304 20.116 4.218 4.8×
† low-level feature network outputs are shared as done during training.

final colorized image. For all different color spaces, we normalize
the values to lie in the [0, 1] range of the Sigmoid transfer function
of the output layer.

Results are shown in Fig. 9. In general, results are very similar.
However, we do find some cases in which the L*a*b* gives the
most perceptionally reasonable approach in comparison with RGB
and YUV. For this reason, we use L*a*b* in our approach.

4.9 Computation Time

We evaluate the time it takes for our model to process images of
several resolutions and show results in Table 3. We evaluate both
on CPU using an Intel R© CoreTMi7-5960X CPU @ 3.00 GHz with
8 cores and on GPU using a NVIDIA R© GeForce R© GTX TITAN X.
For each resolution, we compute the mean of 100 computations
to get a reliable value. We can see that both GPU and CPU are
in the order of less than a few seconds for small images, with GPU
giving roughly a 5× speedup. For large images, using a GPU allows
the colorization to still be done in a few seconds. Our approach is
therefore suitable to near real-time usage.

4.10 Limitations and Discussion

The main limitation of the method lies in the fact that it is data-
driven and thus will only be able to colorize images that share com-
mon properties with those in the training set. We have trained our
model with a very large diverse set of both indoor and outdoor scene
images in order to mitigate this. However, this does not contain, for
example, human-created images. If we wish to evaluate on signif-
icantly different types of images, it would be necessary to train a
new model for the new images.

In order to obtain good style transfer results, it is important for both
images to have some semantic level of similarity between them,
although the image itself can vary drastically as shown in Fig. 7.
We found that best results are obtained when using images from
the same class, or related classes (e.g., Formal Garden, Botanical
Garden, and Golf Course). Transferring the style of semantically
unrelated images, such as those of an aquarium to an image of a
baseball stadium, do not generally give realistic results, although it
is not clear what result to expect in this case. This limitation mainly
arises from the fact that our approach only uses the grayscale of
both images and does not modify the luminance of the output im-
age, as style transfer is not the main focus of this work.

Colorization is also an inherently ambiguous problem: is a man’s
shirt red or green? This has no unique solution. By learning from
the data, our model will mainly use the dominant colors that it has
learned, as shown in Fig. 10. Furthermore, there is no explicit way
for the user to control the colors besides manually setting different
global features. It is likely that there is a way to handle this by
adding an additional optimization on the colorization process itself.
However, this possibility is not explored in this paper.



(a) Cranberry Picking, Sep. 1911 (b) Burns Basement, May 1910 (c) Miner, Sep. 1937 (d) Scott’s Run, Mar. 1937
Figure 8: We show results on historical photographs roughly a hundred years old. First row shows the input black-and-white images,
while our results are shown in the second row. Despite many artefacts due to the age of the photographies, our model can show an impressive
automatic colorization of outdoor photography with people (a), indoor photography with people (b), close-up portraits (c), and can recognize
snow (d). All photographies were taken by Lewis Hine and are part of the US National Archives (Public Domain).

Ground truth RGB YUV L*a*b*
Figure 9: Comparison of L*a*b*, YUV, and RGB color spaces for
our model architecture. We compare a model trained to predict
color values using RGB, YUV, and L*a*b* color spaces. While
results are generally fairly similar, in some of the more challeng-
ing examples, the L*a*b* colorspace gives the most perceptionally
reasonable results.

5 Conclusions

We have presented a novel architecture for the colorization of
grayscale images by fusing both global and local information. Our
approach is based on convolutional neural networks and is able to
perform the colorization without any user intervention. We train
our model end-to-end on a large dataset for scene recognition with
a joint colorization and classification loss that allows it not only to
understand colors, but also adapts the colors to the context of the
image, i.e., the sky color in a sunset image is not the same as in a
daylight image. Our architecture allows us to process images of any
resolution, unlike most deep-learning frameworks. Furthermore,
we show that with the same model we can do style transfer, that is,
color an image using the context of another. Finally, we evaluated
our model on a large diverse set of both indoor and outdoor images
and showed that it can produce very credible results. We compared
against the state of the art and also performed a user study that cor-
roborates the results. Our approach runs in near real-time and has
many potential applications such as automatic colorization of his-
torical photography and movie archives.

Acknowledgements: This work was partially supported by JST
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Input Ground truth Proposed
Figure 10: Typical failure cases of our method. In the upper row,
our model fails to give an autumn color to leaves as our model
does not manage to capture the semantic context of the image, i.e.,
fall. In the bottom row, although a color of the tent is blue in the
ground truth, our model colors it orange. This is due to the inherent
ambiguity of the colorization problem.
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