

DeepRemaster: Temporal Source-Reference Attention Networks for Comprehensive Video Enhancement

Satoshi lizuka Edgar Simo-Serra

Background

- Vintage film is deteriorated
 - Noise, blur, and low contrast
 - Black and white or low quality colors
- Digital remastering is a challenging task
 - Conducted manually by experts
 - Requires a significant amount of both time and money

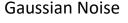
"Oliver Twist" (1933)

"A-Bomb Blast Effects" (1952)

Seven Samurai (1954)

Our Goal

- Semi-automatically remastering of vintage films
 - This includes restoration, enhancement, and colorization

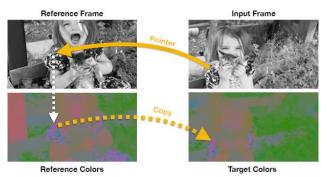


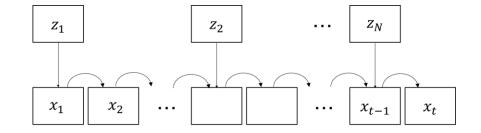
CONFERENCE 17-20 November 2019 - EXHIBITION 18-20 November 2019 - BCEC, Brisbane, AUSTRALIA

Related Work

- Image/video restoration
 - Gaussian noise [Dabov+ '07, Maggioni+ '12 '14, Lefkimmiatis '18]
 - JPEG noise [Zhang+'17]
 - Blur [Shi+ '16]
- Image Colorization
 - Scribble-based [Levin+ 2004; Yatziv+ '04; An+ '09; Xu+ '13; Endo+ '16; Zhang+ '17]
 - Reference-based [Chia+'11; Gupta+'12; He+'18]
 - Automatic [lizuka+'16; Larsson+'16; Zhang+'16]

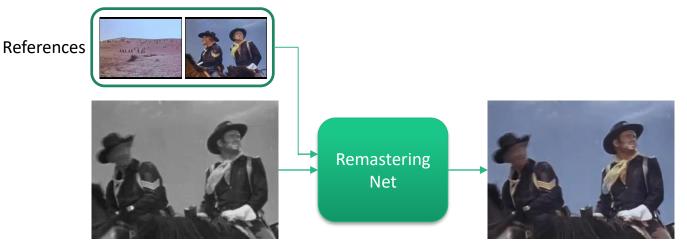
[Zhang+'17]



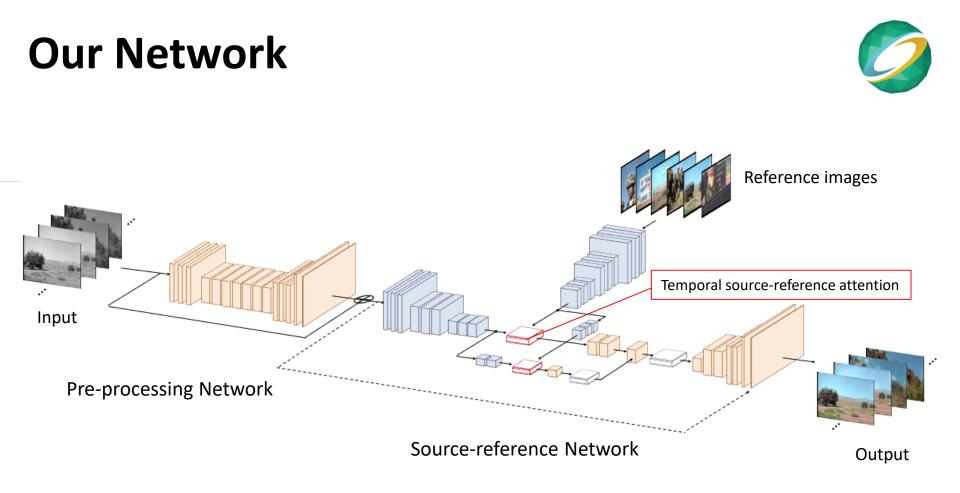

[Levin+'04]

Related Work

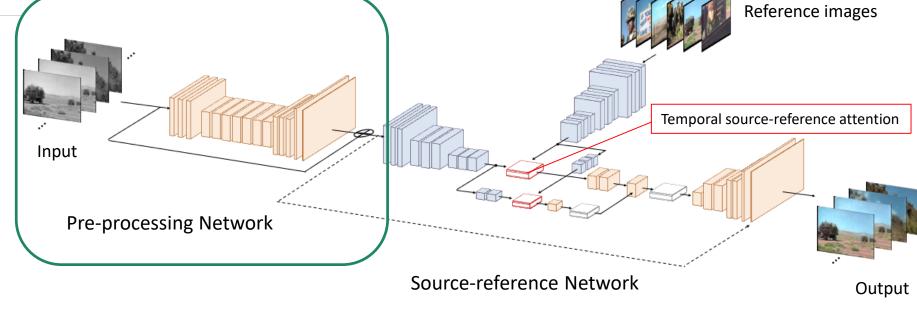
- Reference-based video colorization
 - Recurrent neural networks [Liu+'18; Vondrick+'18]
 - Processes a video by propagating color frame-by-frame
 - Cannot propagate between scene changes
 - Continues amplifying errors


CONFERENCE 17-20 November 2019 - EXHIBITION 18-20 November 2019 - BCEC, Brisbane, AUSTRALIA

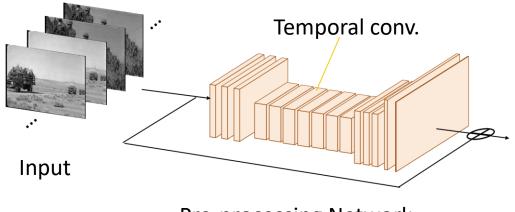
SA2019.SIGGRAPH.ORG


Our Method

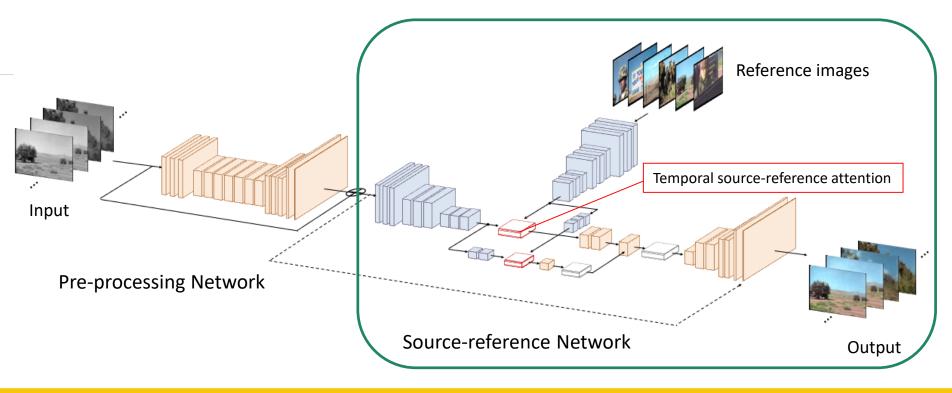
- Model based on spatial and temporal convolutions
 - Automatic noise removal, super-resolution, and contrast adjustment
- Semi-automatic colorization source-reference attention
 - Can colorize a video using an arbitrary number of reference images



SA2019.SIGGRAPH.ORG



Pre-processing Network



- Removes artifacts and noise from the input grayscale video
- Formed exclusively by temporal convolutions

Pre-processing Network

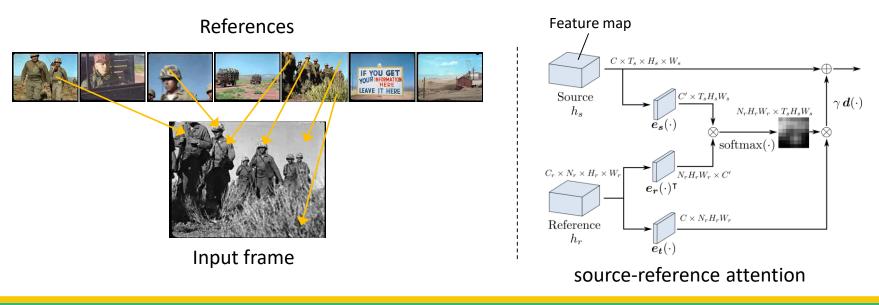
Our Network

Source-reference Network

Ø

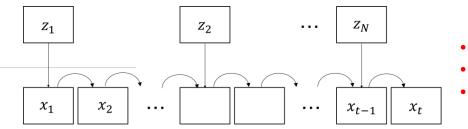
Reference images

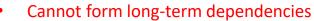
- Takes the output of the pre-processing network along with an arbitrary number of reference color images
 - Source-reference attention Temporal conv. Spatial conv.



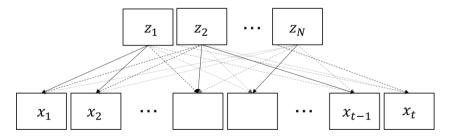
 Colorizes the frames based on the reference images by using source-reference attention

Temporal Source-reference Attention


- Compute similarity between the source images and reference images
 - Actually computed on feature maps



Advantages of Source-Reference Attention



Recursion-based network

- Temporal consistency is lost when a new reference is used
- Require precise scene segmentation

Our temporal source-reference attention

Can use all the color reference information for colorization

Optimization

- Combination of two L1 losses
 - Fully supervised learning
 - Uses ADADELTA[Zeiler '12] for optimization

Objective function:Output of
source-reference networkGround truth
chrominance
$$\arg\min_{\theta,\phi} \mathbb{E}_{(x,y_l,y_{ab},z)\in\mathcal{D}} \|P(x;\theta) - y_l\| + \beta \|S(P(x;\theta),z;\phi) - y_{ab}\|$$
Output of
Ground truth
luminance

Training Data Generation

- Example-based and algorithm-based deterioration
 - Example-based: scratch noise, fractal noise, dust noise, ...
 - Algorithm-based: Gaussian noise, blur, low contrast
- 1200 videos from Youtube8M[Abu-El-Haji+ '16] for training

Examples of noise data

Original

Deteriorated

SA2019.SIGGRAPH.ORG

Comparisons

[Zhang+'17b]&[Vondrick+'18]

[Yu+'18]&[Zhang+'17a]

Input

SA2019.SIGGRAPH.ORG

Quantitative Result

Remastering results

Approach	Frames	# Ref.	PSNR
Zhang+[2017b]&Zhang+[2017a]	90	1	27.13
	300	5	27.31
Yu+[2018]&Zhang+[2017a]	90	1	26.43
_	300	5	26.59
Zhang+[2017b]&Vondrick+[2018]	90	1	26.43
	300	5	26.60
Yu+[2018]&Vondrick+[2018]	90	1	26.85
	300	5	26.89
Ours w/o joint training	90	1	29.07
	300	5	29.23
Ours	90	1	30.83
	300	5	31.14

Quantitative Results

Restoration results

Approach	Frames	# Ref.	PSNR
[Zhang et al. 2017b] [Yu et al. 2018]	300 300	-	25.08 24.49
Ours w/o skip connection	300	-	24.73
Ours	300	-	26.13

Colorization results

Approach	Frames	# Ref.	PSNR
[Zhang et al. 2017a]	90	1	31.28
	300	5	31.16
[Vondrick et al. 2018]	90	1	31.55
	300	5	31.70
Ours w/o temporal conv.	90	1	28.46
	300	5	28.51
Ours w/o self-attention	90	1	29.00
	300	5	28.72
Ours	90	1	34.94
	300	5	36.26

Comparisons

Input

[Yu+'18]&[Zhang+'17a]

[Zhang+'17b]&[Vondrick+'18]

Ours

SA2019.SIGGRAPH.ORG

Reference images (manually created)

CONFERENCE 17-20 November 2019 - EXHIBITION 18-20 November 2019 - BCEC, Brisbane, AUSTRALIA

Results

Reference images

Input

Output

SA2019.SIGGRAPH.ORG

Results

Attention

Reference images

Input

Output

SA2019.SIGGRAPH.ORG

Results

"Isewan typhoon" (1959), the original film is provided by CBC Television Co.

SA2019.SIGGRAPH.ORG

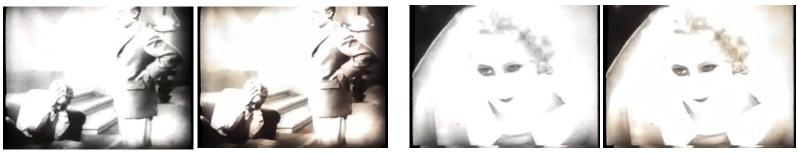
Restoration Results

• Large noise removal

Input

[Zhang et al. 2017b]

Ours



Limitations

- Severely deteriorated film is difficult to remaster
 - Cannot fill large missing regions
- Scene with intense motion

Input

Output

Input

Output

SA2019.SIGGRAPH.ORG

Conclusion

- Novel single framework to tackle entire remastering task
 - Automatic noise removal, super-resolution, and contrast adjustment
 - Reference-based colorization via temporal source-reference attention
- Significant improvement with respect to existing methods
- Applicable to other reference-based image/video processing
- GitHub: <u>https://github.com/satoshiiizuka/siggraphasia2019</u> remastering

